

Modeling & Simulation Environmental Representations Plans & Programs

11 February 1997

Paul Foley, MITRE
Defense Modeling and Simulation Office
Environmental Division
(703) 998-0660 fax (703) 998-0667
pfoley@msis.dmso.mil

MSEA Mission

The Under Secretary of Defense for Acquisition & Technology (USD(A&T)) has designated Modeling & Simulation Executive Agents (MSEAs) for authoritative representation of the natural environment:

To enable
developers and users
to represent the natural environment
rapidly, thoroughly, and consistently
in a manner that promotes
cost-effectiveness, ready access, interoperability, re-use,
and confidence.

MSEA Principals

FY 97 Joint Environmental Program

"LAWS" of M&S Database Design

You can never get all the data you need (or desire)

You can never use all the data you get

You design your simulation around the available data

- but -

The MSEAs are working to eliminate these "laws"

MSEA for Air & Space

Lt Col John M. Lanicci, USAF

HQ USAF Directorate of Command and Control

representing the

Modeling & Simulation Division

Air Force Combat Climatology Center

859 Buchanan St.

Scott Air Force Base, IL 62225-5116

(618) 256-3902

laniccij@af.pentagon.mil

Space Weather Effects on Satellite Systems / Subsystems

 Research Objective: Develop computer simulation capability needed for assessing the impact of space weather on satellite system / subsystems that are or will be deployed in the near-earth space environment

Technology Challenges:

- Providing capabilities to tie satellite sensor, communication link, and navigation link effects models to relevant space environment models in GEOSpace
- Extending a microchip single event upset rate predictor using cosmic ray input to include energetic protons in the radiation belt
- Providing GEOSpace capability to other M&S systems

Space Weather Effects on Satellite Systems / Subsystems

• Approach:

- Utilize existing space models
 - GEOSpace
 - Spacecraft Simulation Toolkit (SST)
 - Space and Missile Analysis Tool (SMAT)
- Construct a satellite object in GEOSpace that allows a user to specify look directions and solid angles, and communication links
- Modify single event upset algorithms to accept proton and heavy ion fluxes
- Transform particle probability to optical background probability
- Couple SMAT and SST models to GEOSpace effects modules

Space Weather Effects on Satellite Systems/Subsystems

- Significance: The resulting space weather effects simulation system will provide capabilities to many M&S customers across DoD
 - Engineering and acquisition communities will use it to design nextgeneration satellites
 - Constructive simulations will be provided with realistic impacts caused by degraded satellite operations
 - Training simulations will be provided with a more realistic representation of how space weather impacts satellite communications, detection, etc.
- Performer: U.S. Air Force Phillips Laboratory

Space Weather Effects on Satellite Systems/Subsystems

- GEOSpace can currently provide products such as one shown here that specifies the 2 Mev electron flux levels in the GPS orbital region
- This model will be made more dynamic by having the electron belts move in response to solar events

High Resolution Gridded Climatology

Research Objective

- Develop capability to produce hourly, annual climate statistics for temperature, pressure, wind, and moisture at 10 km spatial resolution for 800 x 800 km regions.
- Develop climate statistics for other derived variables (clouds, visibility, icing, etc.)

Technology Challenges:

- Method to composite observational and model-generated data
- Automated procedure to assess quality of climatological datasets
- 4-D data assimilation system that is computationally manageable
- Algorithms for calculating derived variables

High Resolution Gridded Climatology

- Approach: Develop basic climatology using Mesoscale Atmospheric Simulation System (MASS) numerical model
 - Determine value of adding actual observations
 - Develop climate statistics for two regions:
 - Korea
 - Middle East
 - Determine feasibility of adapting system to provide 30, 60, 90, 120 day climate forecasts
 - Refine climatologies using statistical methods
 - remove biases
 - provide 1 km resolution data

Preliminary Results of Model Statistics

Temperature Observations vs Model

Preliminary Results of Model Statistics

Precipitation Observations vs Model

High Resolution Gridded Climatology

Significance:

- Provide an efficient method for producing high resolution gridded climatology
- More realistic and higher fidelity Intelligence Preparation of the Battlefield (IPB), mission rehearsal and planning, training, and engineering and acquisition simulations
- Joint M&S programs such as JWARS, JSIMS, and JMASS need this capability.

Performers:

- Air Force Combat Climatology Center
- St. Louis University
- Meso Inc.
- U.S. Air Force Phillips Laboratory

Tri-Service Laboratory Consortium

- Research Objective: Establish a partnership among DoD labs that can efficiently blend the R&D efforts of the three Services to develop optimum M&S solutions for the joint M&S programs.
- Technology Challenges and Organizational Issues:
 - Developing new approaches to problems
 - Optimal use of resources under budget constraints
 - M&S technology rapidly changing
 - Networked M&S system complexity
 - Demand for more sophisticated environmental representations

Tri-Service Laboratory Consortium

Approach:

- Develop action plan describing how to best leverage and coordinate DoD lab resources
- Conduct regularly scheduled workshops
 - to exchange ideas
 - to gain better appreciation of each lab's capabilities
 - to learn more about customer needs
- Develop cooperative R&D programs addressing technical shortfalls

Tri-Service Laboratory Consortium

Significance:

- Prevents duplication of M&S efforts
- Better enables labs to develop models that are interoperable and reusable
- Better focuses DoD lab M&S resources
- Provides MSEA with more direct access to lab expertise

• Performers:

- U.S. Air Force Phillips Laboratory
- U.S. Army Research Laboratory
- Naval Research Laboratory Monterey

MSEA for Ocean

Dr. Donna W. Blake
Ocean Executive Agent (OEA) Office
NRL Code 7306

4555 Overlook Avenue, SW

Washington, DC 20375

(202) 404-1426

dblake@msis.dmso.mil

Research Objective:

 Combine existing numerical models with state-of-the-art assimilation / fusion methods into a tested and documented system which can rapidly generate required environmental data for modeling and simulation

Technology Challenges:

- Little or no reliable environmental information exists today for most coastal areas outside the US
- Established procedures do not exist to produce reliable data bases from available models and observations

Approach:

- Assemble predictive system for an area of interest
 - Numerical models
 - Include in situ satellite data sets
 - Test data assimilation methods
- Integrate remote sensing data (satellite and aircraft)
- Test and evaluate system performance
- Develop output routines for data bases
- Document all procedures for RAGLES
- Provide access to RAGLES through MEL (Master Environmental Library)

Results:

- RAGLES is capable of generating detailed wind, wave, and water level information
 - Previous assumptions concerning sheltering are significantly incorrect
- RAGLES incorporates numerical, model, satellite, and <u>in situ</u> data
 - Improved algorithm for satellite wave estimates

Contours of Exceedance

• Significance:

- Methodology provides vastly improved data bases for important areas of operation
- Methodology will provide the capability to rapidly produce consistent littoral representations for any coastal region

• Transition:

- Improved littoral environment data bases have been requested by PACOM for operational planning (LOTS)
- Improved littoral environmental data bases are being transitioned to relevant simulation models within DoD (LOTS)
- Procedures, methodology, and prototype test data bases will be documented with access provided through MEL (DMSO)

Research Objective:

- Develop procedures for generating surf zone environmental representation
- Develop procedures to generate the environmental effects on surf zone platforms and sensors

• Technology Challenge: Establishing a complete, efficient, and consistent methodology for representing surf zone complexity

Approach:

- Identify available numerical models and input data requirements
- Design linked algorithms to produce parameters for the surf zone model
- Prepare environmental parameters for the surf zone model
 - winds
 - tides
 - beach profiles
 - wave spectra
- Obtain and encode data for ocean wave and ocean circulation models
- Integrate all components
- Provide results to M&S users

Results:

- Documented procedures to calculate various surf zone processes
- Report on optimum approach and requirements
- Work started on surf zone model
- GRIB / BUFR formatted ocean wave and ocean circulation data for two areas

• Significance:

- Step-by-step procedures used to prepare input data, run models, and evaluate results
- Explosive technology included in the surf zone
- A time dependent surf zone environmental representation model targeted for use in the Explosive Advanced Technical Development Project

Surf Zone Modeling Procedure

Environmental Databases:

water column
air column
bathymetry
bottom sediment
obstacles

Manmade:

minefields obstacles

Reconnaisance:

surf visibility

Supporting Models:

wind
waves
circulation
acoustic
optical
electro magnetic
foam
spray

Dynamic Representations:

waves
water level
tides
currents
bar movement
visualizations

Environmental Effects:

surface platforms
mine clearance
special warfare
operations
optical systems
underwater
vehicles

Under development

Surf Zone - Dynamic Environment

MSEA for Terrain

Dr. William M. Cornette

Technical Advisor for Defense Modeling and Simulation

National Imagery and Mapping Agency (SA)

4600 Sangamore Road, D-33

Bethesda, MD 20816-5003

(301) 227-3492

CornetteW@nima.mil

M&S Terrain Definition

- Terrain representation includes:
 - the configuration, composition, and representation of the surface of the earth, its relief, natural features, permanent or semi-permanent man-made features, and related processes.
 - terrain coverage involving seasonal and diurnal variation such as grasses and snow, foliage coverage, tree type, and shadow.
 - the terrain surface plus inland waters, and the sea floor bottom to the
 10 meter depth curve.
 - the mutual interaction of dynamic phenomena and the terrain.

DoD Modeling and Simulation (M&S) Master Plan, DoD 5000.59-P, October 1995

Terrain M&S Data

- Topology / Geometry
 - Elevation map (DTED 0 5)
 - 3-D models (e.g., buildings, bridges, vehicles)
 - Fine and coarse scale roughness
 - Material thickness and orientation

_

- Attributes (FACC with extensions)
- Parameter libraries
 - Temporal variations (e.g., snow / ice, seasonal)
 - Thermal properties (e.g., specific heat)
 - Optical properties (e.g., reflectivity)
 - Radar / lidar properties (e.g., backscatter)
 - Textures / texture maps / modulations

Generating M&S Databases

1996: Weeks/Months **2000 + : Hours/Days** Raw Data **Program Elements Run Time Acquisition Environmental Effects Standards Data Preparation & Requirements & Capabilities Data Processing Run Time Environmental Just-In-Time Production Database Data Fusion & Rapid Extraction Dynamic Representations** Data Producers **Database Repository of DoD Access to Resources** Integration and Commercial **Data Sets** Value Adding: **Database transformation Just-in-Time additions Needs much work Data rationalization Needs some work Pre-computed environmental effects** Well understood

Standards

Activities:

- Data Dictionary
- VV&A/VV&C Projects
- Enhanced VPF profile to support M&S
- Environmental data interchange specification (SEDRIS)

Target Accomplishments:

- Accepted standards to promote interoperability and reuse
- More consistent and cost effective exchange of environmental data
- Determine feasibility of VPF as baseline for SEDRIS
- Extend SEDRIS to include large volume gridded data fields
- Give the M&S community an extended family of VPF products with an expanded DoD Data Dictionary

Requirements & Capabilities Analysis

Activities:

- High resolution terrain support & analysis
- Academic research BAA
- Terrain prototype & test environment for M&S
- SE development process definition

Target Accomplishments:

- Extensive field visits to customers
- Finalize prototype high-resolution MOBA data sets
- Facilitate definition of requirements by M&S developers and users
- Identify and plan for addressing capability shortfalls
- Establish user-accessible global M&S environment requirements and capabilities database
- Establish teamwork across service laboratories
- Effective MSEA advocacy of developer and user M&S requirements to data producers
- Improved subject matter expertise

Just-in-Time Production

Activities:

- Auto feature extraction & integrated triangulated irregular network process development
- Rapid extraction of elevation and feature data
- Commercial terrain extraction prototype
- Commercial multi-sensor source
- Commercial hyper-spectral imagery feature extraction
- Improved terrain database construction
- Shareware image generator development

Target Accomplishments:

- 4 times faster terrain database processing time
- 50 times faster automated elevation / feature extraction
- Commercial capability catalog provided to users
- Prototype data sets generated and evaluated for process and product specification

Shuttle Radar Topography Mission (SRTM)

Launch date: May 2000 System ready: March-May 1999 Processing time: 12 months

Interferometric SAR system

- C-band Interferometric SAR based on SIR-C
- Terrain height data (DTED 2)
- SAR image (30 meter pixel)
- Terrain classification overlay (urban, water, vegetation, forest)

Joint DoD (NIMA) / NASA (JPL) mission

- DTED 1 and CONUS DTED 2 Releasable; OCONUS DTED 2 TBR
- Images between 60° N and 56° S
- Captures 80% of Earth land mass
- Dual coverage ascending and descending passes; altitude 227 km; 57° inclination

Dynamic Representation

- Activities:
 - Dynamic agents / mobile objects (DYNAMO)
 - Dynamic terrain and structures
- **◆ Target Accomplishments:**
 - Issues identification and lessons learned
 - Reference implementations available for customer consideration
 - Make reusable dynamic algorithms and tools available to M&S developers

Dynamic Terrain

Natural Changes

Military Operations

Obstacles

Cratering

Damaged Buildings

High Resolution Data -1 meter

UNCLASSIFIED

- Absolute / relative accuracy
- Fidelity in capture of micro terrain

1 meter

3 meter

10 meter

Fidelity under the canopy

Fort Benning, GA
McKenna MOUT site

Tell me more

Terrain Modeling Project Office lillegardk@nima.mil halls@nima.mil http://162.214.2.53:8001/

Air and Space Natural Environment Office msea@thunder.safb.af.mil http://thunder.safb.af.mil/html/msea

Ocean Executive Agent Office oceanea@msis.dmso.mil http://www.dmso.mil/ocean_ea/OceanHome.html